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SUMMARY 

An i nves t iga t ion   o f   t he  aerodynamic c h a r a c t e r i s t i c s   o f  a series of  cambered 
forebody  models  having a systematic   var ia t ion  in   nose  droop  angle  was conducted i n  
t h e  Langley  8-Foot  Transonic  Pressure  Tunnel a t  Mach numbers  from 0.60 t o  1.20 and i n  
t h e  Langley  Unitary  Plan Wind Tunnel a t  Mach numbers  of  1.47, 1.80, and 2.16. The 
forebodies  had a f i n e n e s s   r a t i o   o f  3 and were attached  through a t r a n s i t i o n   s e c t i o n  
t o  a cy l indr ica l   a f te rbody.  The models  were tested  through  an  angle-of-attack  range 
of about Oo t o  1 2 O  i n   t h e  8-Foot  Transonic  Pressure  Tunnel  and - 2 O  t o  20° i n   t h e  
Unitary  Plan Wind Tunnel. S t a t i c   l o n g i t u d i n a l  aerodynamic c h a r a c t e r i s t i c s  of t h e  
models  were  determined f o r   a l l  Mach numbers, a n d   l a t e r a l - d i r e c t i o n a l   c h a r a c t e r i s t i c s  
were determined  for Mach numbers  of 1.47 t o  2.16. 

The inves t iga t ion   i nd ica t ed   t ha t   t he   p r inc ipa l   e f f ec t   o f   va ry ing   nose   d roop  was 
on p i t ch ing  moment, with some secondary  effects  on lift and  drag. All t h e  models 
e x h i b i t e d   t h e   c h a r a c t e r i s t i c  aerodynamic  behavior  of  forebody/cylindrical  afterbody 
conf igura t ions ;   tha t  is, most  of t h e   l i f t   a t  low angles  of a t t ack  was apparently 
generated on the  forebody,   while   for   higher   angles   of   a t tack,   the   data   implied  con-  
s ide rab le   a f t e rbody   l i f t   gene ra t ed  by separated  cross-flow  drag. Two computer 
methods  were u s e d   t o   p r e d i c t  wave drag. The r e s u l t s  were  compared with  experimental 
da ta   for   supersonic  Mach numbers. 

INTRODUCTION 

Mdern   h igh-speed   a i rc raf t ,   espec ia l ly   those   used  by t h e   m i l i t a r y   s e r v i c e s ,  
f requent ly   requi re  a l a rge  amount of  over-the-nose v i s i b i l i t y ,   i n   p a r t i c u l a r   d u r i n g  
the  approach  and  landing  phase  of  f l ight.  Although  canopy he ight  i s  an  obvious 
f a c t o r  i n  determining  vis ibi l i ty   over   the  nose,   increased  canopy  height  i s  o f t e n  
accompanied by increased  drag,  which c o u l d   b e   e s p e c i a l l y   s i g n i f i c a n t   f o r   a i r c r a f t  
with a supersonic  performance  requirement.   Over-the-nose  visibil i ty  can  also  be 
increased by drooping  the  nose, which may have the  addi t ional   advantage  of   reducing 
the   l eng th  of the  nose  gear. 

Some previous   s tud ies  of  nose  droop  and  forebody  camber a r e   r e p o r t e d   i n   r e f e r -  
ences 1 through 5. General ly ,   these  s tudies   consis ted of wind-tunnel t e s t s  of  body 
shapes  with a re la t ive ly   smal l   range  of  nose  droop, or  wing-body-tail  arrangements 
with  various amounts  of forebody camber. A s  might  he  expected,  the  most  Significant 
e f f e c t s  were n o t e d   i n   p i t c h i n g  moment and l i f t ,   w i t h  some changes i n  drag. The gen- 
e r a l   c h a r a c t e r i s t i c s  of the  f low  over  a forebody  with a cy l ind r i ca l   o r   nea r -cy l ind r i -  
cal   af terbody  have  been  discussed  in   references 6 and 7 and, more r e c e n t l y ,   i n   r e f e r -  
ence 8. A t  low ang les   o f   a t t ack ,   v i r tua l ly  a l l  t h e   l i f t  i s  i n v i s c i d   l i f t   g e n e r a t e d  
on the  forebody. A t  h igher   angles   of   a t tack,  however, v i scous   c ross   f low  over   the  
af terbody  separates ,  which r e s u l t s   i n  a s u b s t a n t i a l   c o n t r i b u t i o n   t o   t h e  normal  force. 

The p resen t   i nves t iga t ion  w a s  i n i t i a t e d  t o  determine  the  aerodynamic  effects 
associated  with a systematic   var ia t ion  of   nose  droop  angle   for  a body with a c i r c u l a r  
c ross   sec t ion .  The basel ine  configurat ion  f rom which t h e  drooped-nose  models w e r e  
derived  had a forebody  with a f i n e n e s s   r a t i o   o f  3 and a cy l indr ica l   a f te rbody.  A 
series of s i x  models w e r e  constructed  with  nose  droop  angles  varying  from 00 t o  -200 
i n  4O increments. These  models w e r e  t e s t e d   i n   t h e  Langley  8-Foot  Transonic  Pressure 





- 
C reference  length,   base  diameter ,  2.00 in .  (5.08 c m )  

L / D  l i f t - d r a g  ra t io  

1 overa l l   l ength   o f  model, 19.0 in .  (48.3 cm) 

M f ree-stream Mach number 

q free-stream dynamic pressure,   psf  (Pa) 

r body r ad ius ,   i n .  (cm) 

S reference area, base   a rea ,  3.142 i n2  (20.27 cm 2, 

X longi tudinal   d is tance  f rom  nose of  model, i n .  ( c m )  

zC ve r t i ca l   d i s t ance   o f  mean l i n e  from hor i zon ta l   r e f e rence   l i ne ,   i n .  (cm) 

a angle  of a t tack,   deg 

B angle  of s ides l ip ,   deg  

8 angle  of  nose  droop,  deg,  positive  up 

Subscript:  

max  maximum 

Abbreviation: 

Conf . configurat ion 

D E S C R I F T I O N  OF MODELS 

Sketches of t h e   p r o f i l e s   o f   t h e   s i x  models u s e d   i n   t h i s   i n v e s t i g a t i o n   a r e  shown 
i n   f i g u r e  1, and a photograph  of  the  models i s  shown i n   f i g u r e  2. Each  model  con- 
sists of a forebody  with a f i n e n e s s   r a t i o  of 3, a t r ans i t i on   s ec t ion   w i th   cons t an t  
c ross -sec t iona l  area, and a common cyl indr ica l   a f te rbody.  The long i tud ina l   a r ea  
d i s t r i b u t i o n  of the   forebodies  i s  i d e n t i c a l   t o   t h a t  of a tangent   ogive  of   the same 
length   and   f ineness   ra t io .  The model  geometry  of  each of the   forebodies  w a s  devel- 
oped by shea r ing   t he   c i r cu la r   c ros s   s ec t ions   o f   t he   t angen t   og ive   ve r t i ca l ly  so t h a t  
the   upper   sur face  a t  the   p lane   o f  symmetry was a s t r a i g h t   l i n e   i n c l i n e d   a t   a n   a n g l e  
8, defined as the   ang le  of nose  droop. The angle  w a s  va r i ed  from Oo for   conf igura-  
t i o n  1 t o  - 2 O O  fo r   con f igu ra t ion  6 i n  increments  of 40. For  each model, a t r a n s i t i o n  
sec t ion  w a s  designed  which w a s  t angent  t o  the  forebody a t  i t s  base  and  tangent t o  t h e  
cy l indr ica l   a f te rbody.  Some of the   geometr ic   charac te r i s t ics  of t h e  models inc luding  
t h e   r a d i u s  and mean l ine   va r i a t ions   a long   t he   x -ax i s   a r e   g iven   i n   t ab l e  I, and a p l o t  
of t h e  normal area d i s t r i b u t i o n ,  which was i d e n t i c a l   f o r  a l l  models, is  shown i n  
f i g u r e  3. 
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TEST  CONDITIONS,  INSTRUMENTATION, AND DATA CORReCTIONS 

Wind-tunnel tests a t  subsonic  and  transonic Mach numbers ( M  6 1.2)  were con- 
ducted i n   t h e  Langley 8-Foot Transonic  Pressure  Tunnel,  and tests a t  supersonic  Mach 
numbers were conducted in   the  Iangley  Unitary  Plan Wind Tunnel. 

The subsonic-transonic tests were  conducted a t  a Reynolds number of 3 .2  X lo6  
per foo t  ( 1 0 . 5  x 1 O6 per meter) , and  boundary  layer   t ransi t ion was f ixed  on t h e  model 
by means of a 0.10-in. (0.25-cm) wide strip of No.  120 carborundum g r i t ,   l o c a t e d  
1.5 i n .  ( 3 . 8  c m )  a f t  of t h e  model nose  apex. 

The supersonic tests were  conducted a t  a Reynolds number of 2 . 0  x 10 p e r   f o o t  6 

( 6 . 6  x 10 per   me te r ) ,   and   t he  boundary l a y e r   t r a n s i t i o n   s t r i p   c o n s i s t e d   o f  a 
0.063-in. (0.159-cm) wide  band  of No. 50 carborundum g r i t   l o c a t e d  1.2 in.  ( 3 . 0  cm) 
a f t  of t h e  model nose  apex. 
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Some of t h e   o t h e r   t e s t   c o n d i t i o n s  are shown i n   t h e   f o l l o w i n g   c h a r t :  

I I S tagnat ion  pressure T 
0.60  

80 
.90 
.95 

1 . 1 0  
1 .20  
1.47 
1 .80  
2.16 

2137 
1796 
1705 
1673 
1617 
1606 
1103 
1220 
1430 

.. 

kPa 

102.3  
86 .0  
8 1 . 6  
80. 1 
77 .4  
76 .9  
5 2 . 8  
58 .4  
6 8 . 3  

Stagnation  temperature 

OF 

120 
120 
120 
120 
120 
120 
150 
150 
150 

~ _ _ . _ ~  . 

K 

32 2 
322 
322 
322 
322 
322 
339 
3 39 
339 

Forces  and moments were  measured by means of a six-component strain-gage  balance 
contained  within  the model. The balance was attached  through a s u p p o r t i n g   s t i n g   t o  
t h e  permanent  model-actuating  systems i n   t h e  wind tunnels .  Base cavi ty   p ressures  
were measured by means of two tubes   rou ted   a long   t he   s t i ng   and   t o   t he   ou t s ide   o f   t he  
tunnel,  where they were connected t o  two pressure  t ransducers .  These pressures  were 
measured  throughout t h e   t e s t  program i n   o r d e r   t o   c o r r e c t   t h e   d a t a   t o  a condi t ion of 
f r e e - s t r e a m   s t a t i c   p r e s s u r e   a c t i n g   o v e r   t h e   t o t a l  model base. 

The base   d rag   var ia t ions  are shown i n   f i g u r e  4. In   general ,   the   base  drag 
increased   as   angle  of a t tack   increased  above values  of about 4O. A t  constant   angle  
of a t t ack ,   t he   base   d rag  became grea te r   wi th   increas ing  Mach number up t o  1 . 1 0 .  
Above M = 1.20 ,  the   base  drag  decreased  with  increasing Mach number. Larger  than 
average   var ia t ions   in   base   d rag  between  models a t  Mach numbers 1 . 1 0  and  of 1.20 were 
most l ikely  caused by t h e   r e f l e c t e d  bow shock  impacting t h e   s t i n g   n e a r   t h e  model 
base. 
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The data were corrected  for   def lect ions  of   the   balance-st ing  combinat ion  due t o  
aerodynamic  loads. The d a t a   f o r  M = 1.47 and  above w e r e  c o r r e c t e d   f o r  t e s t  sec t ion  
flow  angularity.  

RESULTS AND DISCUSSION 

Experimental Data 

Some of t h e   s t a t i c   l o n g i t u d i n a l  aerodynamic c h a r a c t e r i s t i c s   o f   t h e   s i x  models  of 
t h i s   i n v e s t i g a t i o n   a r e   p r e s e n t e d   i n   f i g u r e  5. A t  Mach numbers below 1.00, t h e  most 
n o t i c e a b l e   e f f e c t  of increasing  nose  droop i s  a s i z e a b l e   r e d u c t i o n   i n   p i t c h i n g  
moment. The pitching-moment  increment due t o  nose-droop-angle  variation  remains 
near ly   constant   up t o  a l i f t   c o e f f i c i e n t  of  about 0.5. The l i f t - c u r v e   s l o p e s   a r e  
r easonab ly   l i nea r   nea r   ze ro   l i f t   and   i nc rease   w i th   i nc reas ing   ang le  of a t t a c k  by 
amounts  which a re   an   i nve r se   func t ion  of the  nose  droop  angle. The low values  of 
l i f t - c u r v e   s l o p e   a n d   t h e   i n s t a b i l i t y  of the   p i tch ingaoment   curves  imply t h a t  most  of 
t h e   l i f t  i s  generated  on  the  forebody. The d r a g   v a r i a t i o n   w i t h   l i f t  i s  e s s e n t i a l l y  
p a r a b o l i c ,   w h i l e   t h e   l i f t   c o e f f i c i e n t   f o r  minimum d r a g   t e n d s   t o   i n c r e a s e   s l i g h t l y   a s  
nose  droop i s  increased. There are   on ly  minor d i f f e r e n c e s   i n   t h e   l i f t - d r a g   r a t i o  
( L / D )  f o r   t h e   v a r i o u s  models a t  subsonic Mach numbers. 

A t  Mach numbers of 1.10 and 1.20, t h e   l i f t  and  pitching-moment c h a r a c t e r i s t i c s  
a r e  similar t o   t h e   d a t a   f o r  Mach numbers less than 1.00; however, the   increased  sep- 
a r a t i o n  between the   d rag   po la r s  i s  probably   the   resu l t  of t h e   e f f e c t  of  nose  droop  on 
wave drag. The d i f f e r e n c e s   i n   t h e   d r a g   p o l a r s   o c c u r   a t   r e l a t i v e l y  low values  of l i f t  
so t h a t   t h e  L/D v a r i a t i o n s   f o r   t h e   d i f f e r e n t  models f a l l   i n  a narrcw band. 

For Mach numbers of 1.47 and  above, data were taken a t  ang le s   o f   a t t ack   up   t o  
about 20°.  The d a t a   a t  low angles  of a t t a c k  are s i m i l a r   t o   t h e   s u b s o n i c   d a t a ;   t h a t  
is ,  genera l ly  low values  of l i f t -curve   s lope   and   uns tab le   p i tch ingaoment   var ia t ions  
f o r   t h e   r e f e r e n c e  moment center .  A t  h ighe r   ang le s   o f   a t t ack ,   t he   i nc reas ing   l i f t -  
curve  s lopes  and  reduced  instabi l i ty  of the  pitching-moment  curves  imply  increased 
l i f t  on the   a f te rbody  due   to   separa ted   c ross   f low.   These   charac te r i s t ics   a re   typ ica l  
of   forebody-af terbody  configurat ions  as   discussed  in   references 6 through 8. For 
model 1 and, t o  a lesser e x t e n t ,   f o r  models 2 and 3, t h e  forebody  apparently  also 
develops some separated  cross   f low,   s ince more l i f t  i s  produced a t  a given  angle  of 
a t t ack ,   and   t he  less s t ab le   p i t ch inTmoment   va r i a t ion   i nd ica t e s   t ha t   t he   cen te r  of 
l i f t  i s  c l o s e r   t o   t h e  model  apex. The d i f f e rences   i n   f l ow  behav io r   fo r   t he   va r ious  
models t end   t o   dec rease   w i th   i nc reas ing  Mach number so t h a t   f o r  M = 2.16, t h e   l i f t  
var ia t ion   wi th   angle   o f   a t tack   and   the   p i tch ing-moment   var ia t ion   wi th   l i f t   coef f i -  
c i e n t  are similar f o r   a l l   t h e  models. 

The s u b s t a n t i a l  loss of l i f t   a t  low ang les   o f   a t t ack   fo r   t he  models w i th   t he  
h ighes t   degree   o f   nose   d roop   ind ica tes   the   poss ib i l i ty   o f  some cross-flow  separation 
on t h e  lower  surface  of  those  models.  Although  the  models  with  the least amount of 
nose  droop  have lower minimum drag ,   h ighe r   l eve l s   o f   d rag -due - to - l i f t   r e su l t   i n  lower 
values  of maximum L/D t h a n   f o r   t h e  models with  greater  nose  droop. The maximum 
value of l i f t - d r a g   r a t i o  a t  supersonic  speeds i s  on t h e   o r d e r  of 2.3. 

Figure 6 shows t h e   v a r i a t i o n   o f  some of t h e   l o n g i t u d i n a l  aerodynamic  parameters 
with Mach number. The increment i n  Cm10 f o r   t h e   v a r i o u s  models remains   re la t ive ly  
cons t an t   ove r   t he  Mach number range. Models 1 and 2 have  posi t ive CmI0, whi le   the  
o the r  models a l l  have  negative Cm,O. The v a r i a t i o n  of Cm,O with Mach number is  
reasonably   l inear   except   for  a dlp  around M = 1.10. 
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For Mach numbers less than  1.00, t h e r e  i s  a maximum v a r i a t i o n  of about 25 per- 
c e n t   i n  between  models 1 and 6, while a t  supersonic  Mach numbers, t h e  maximum 
v a r i a t i o n  1s about 35 percent .   Ievels  of CD,o f o r  any p a r t i c u l a r  Mach number a r e  
approximately  equal  for models 1, 2, and 3, and become i n c r e a s i n g l y   g r e a t e r   f o r  
models  4,  5,  and 6 a t   supersonic   speeds .  

cP,O 

The v a r i a t i o n  of cL a t  a = 0 with  nose  droop  angle i s  due t o  camber o r  
e f f ec t ive   ang le   o f   a t t ack ,   a l t hough   t he   s l i gh t ly   nega t ive   va lues  of f o r  models 
1 and 2 a t  t h e  lower Mach numbers were not  expected. The d i f f e r e n c e s   I n  CL,o 
between the   var ious  models i n   gene ra l   i nc rease   w i th   i nc reas ing  Mach numbers. 

cL,O 

The long i tud ina l   s t ab i l i t y   pa rame te r  i s  measured  near CL = 0 and, with  the 
exception  of model 6, i s  r e l a t i v e l y   c o n s t a n t   f o r  Mach numbers  above 1.40 a n d   f o r  Mach 
numbers l e s s   t h a n  0.90. m d e l  6 i s  less u n s t a b l e   a t   h i g h   a n d  low Mach numbers and 
more u n s t a b l e   a t   t h e   i n t e r m e d i a t e  Mach numbers than  any  of  the  other  models.  

The l if t-curve  slope,   measured  near CL = 0,  genera l ly   increased   s l igh t ly   wi th  

increased  with  increasing  nose  droop  but  did  not  vary  in a cons i s t en t  manner 
increas ing  Mach number f o r  models 1, 2, and 3. For  models 4, 5,  and 6, t h e   l e v e l s   o f  

cL, 

with  changes i n  Mach numbers. 

S t a t i c   l a t e r a l  and   d i r ec t iona l   da t a   a r e   p re sen ted   i n   f i gu res  7 through 9. The 
model-s t ing  instal la t ions were  dynamical ly   unstable   during  the  tes ts   in   the 8-Foot 
Transonic Pressure Tunnel. %e i n s t a b i l i t y  became more c r i t i c a l  when t h e  models were 
yawed. As a consequence, s i d e s l i p   d a t a  were o b t a i n e d   i n   t h i s   t u n n e l   o n l y   f o r  
model 6. Figure 7 shows coef f ic ien ts   o f  yawing moment, r o l l i n g  moment, and s i d e  
force   versus   angle  of a t t ack   fo r   s ides l ip   ang le s   o f  Oo and 5O a t  Mach numbers  up 
to 1.20. Yawing t h e  model generated a s u b s t a n t i a l   r o l l i n g  moment, which was essen- 
t i a l l y   u n a f f e c t e d  by changes i n  e i t h e r   a n g l e  of a t t a c k   o r  Mach number. The substan- 
t ia l   s ide-force  increment   caused by  yaw tended t o   i n c r e a s e   a t   a n g l e s  of a t t ack  above 
4 O  and a l s o   a s  Mach number increased. Yawing t h e  model apparently  caused  afterbody 
separa t ion  a t  a lower  angle  of  attack,  with a r e s u l t a n t  change i n   d i r e c t i o n  of t h e  
yawing moment.  The angle   of   a t tack a t  which t h i s  change i n   d i r e c t i o n   o c c u r r e d  
decreased  with  increasing Mach number through M = 1.10. 

Figure 8 p re sen t s   coe f f i c i en t s   o f  yawing moment, r o l l i n g  moment, and   s ide   fo rce  
f o r  models 2, 4, and 6 a t   t h r e e   a n g l e s  of a t tack   over  a range   of   s ides l ip   angles   for  
Mach numbers of 1.47 and 2.16.  Because t h e   v a r i a t i o n   o f   t h e   c o e f f i c i e n t s  i s  reason- 
a b l y   l i n e a r   f o r   s i d e s l i p   a n g l e s  between 4 O  and - 4 O ,  l a t e r a l - d i r e c t i o n a l   s t a b i l i t y  
de r iva t ives  were c a l c u l a t e d   f o r   a l l   t h e  models  and are  p r e s e n t e d   i n   f i g u r e  9. These 
s t a b i l i t y   d e r i v a t i v e s  were ca l cu la t ed  from d a t a   t a k e n   a t   a n g l e s  of s i d e s l i p  of 00 
and 3O. The r o l l - s t a b i l i t y   p a r a m e t e r   i n c r e a s e s   i n  a near- l inear   fashion  with 
increasing  nose  droop  angle  and  varies little with  changes i n   a n g l e  of a t t a c k   o r  Mach 
number, with  the  except ion  of  model 6, which produces a decrease  in  roll ing-moment 
der iva t ive   wi th   increas ing   angle  of a t tack .  

A l l  t h e  models a r e   d i r e c t i o n a l l y   u n s t a b l e   a t  low angles  of a t tack ,   and   the  
models  with  small  nose  droop  angles  remain  unstable a t   t h e   h i g h e r   a n g l e s   o f   a t t a c k ,  
where the  afterbody  forces  predominate.  "be models with  large  nose  droop  angles 
become d i r e c t i o n a l l y   s t a b l e   a t   t h e   h i g h e r   a n g l e s   o f   a t t a c k .  This d i r e c t i o n a l   s t a b i l -  
i t y  becomes of cons ide rab le   s ign i f i cance   a s   t he   supe r son ic   f l i gh t   r eg imes  of f i g h t e r  
a i r c r a f t  and missiles a r e  expanded t o   h i g h e r   a n g l e s  of a t t ack .  All models exh ib i t ed  
s i d e - f o r c e   s t a b i l i t y  which increased by varying amounts as angle  of a t t a c k  was 
increased. 
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For th i s   inves t iga t ion ,   the   angle-of -a t tack   range  below 8 O  or   loo  provides   the 
most s ign i f i can t   da t a   fo r   app l i ca t ion   o f  a drooped  nose t o  a conven t iona l   a i r c ra f t  
configuration. For h igher   angles   o f   a t tack ,   the   da ta   a re   s t rongly   in f luenced  by t h e  
v iscous   c ross   f low  over   the   cy l indr ica l   a f te rbody,  which may not   be  representat ive  of  
a n   a i r c r a f t  f uselage. 

Comparison  of  Experiment  and  Theory 

The  wave d rag   o f   t he   s ix  models a t  supersonic Mach numbers was computed by two 
methods desc r ibed   i n   r e f e rences  9 and 10.  The method  of re ference  9, a f a r - f i e l d  
wave drag method, i s  based on s lender  body theory  and  the  supersonic   area  rule .  The 
ze ro - l i f t  wave drag of a conf igura t ion  i s  determined by t ak ing  a weighted  average  of 
t h e  wave drags   for   severa l   equiva len t   bodies   o f   revolu t ion  formed by pass ing  a series 
of Mach planes  through  the  configuration a t  various  azimuth  angles. 

The method of reference 10 i s  a near - f ie ld  method and  uses a modif ied  l inear-  
theory  with  exact  boundary condi t ions  and  local  Mach number c o r r e c t i o n s   t o   c a l c u l a t e  
pressure  dis t r ibut ions  over   the  Configurat ion  surface.  These p re s su re   d i s t r ibu t ions  
a r e   i n t e g r a t e d   f o r   l i f t ,   d r a g ,  and p i t c h i n g  moment. This method i s  n o t   l i m i t e d   t o  
the   zero- l i f t   d rag   condi t ion   and   can   be   used   to   ca lcu la te   p ressure   d i s t r ibu t ions   and  
forces   and moments for   var ious   angles  of a t t ack .  

Both methods  were used t o  compute t h e  wave drag of t h e  s i x  models f o r  Mach  num- 
be r s  of 1 .20 ,  1.47, 1.80,  and 2.16. The geometry  of t h e  models was i n p u t   i n t o   t h e  
two programs i n   t h e  a = Oo or i en ta t ion .  It shou ld   be   no ted   t ha t   t h i s ,   i n   gene ra l ,  
i s  n o t   t h e   o r i e n t a t i o n   f o r   z e r o   l i f t ,   a s   c a n   b e   s e e n  from t h e   d a t a   i n  f iqure  5. 

Experimental  values  of wave d rag   coe f f i c i en t  were  Zetermined by sub t r ac t ing  
sk in - f r i c t ion   d rag   coe f f i c i en t s ,   c a l cu la t ed  by t h e  method  of re ference  11, from t h e  
exper imenta l   d rag   coef f ic ien ts   for  a = O o .  The experimental   data   and  theoret ical  
e s t ima tes   a r e  shown i n   f i g u r e  10 as a func t ion  of  nose  droop  angle  for  various  super- 
sonic  Mach numbers. 

The f a r - f   i e l d  wave drag program p r e d i c t s   t h e   t r e n d s ,   i f   n o t   t h e   a b s o l u t e   d r a g  
l e v e l s ,   f o r  Mach numbers of 1.20 and 1.47. A t  t he   h ighe r  Mach numbers, t h e r e   a r e  
s u b s t a n t i a l   d i f f e r e n c e s  between  theory  and  experiment ,   par t icular ly   for  models 1 
and  6,  which  have t h e  most extreme  camber. The e f f e c t  of t h i s  camber coupled  with 
the   h ighe r  Mach numbers is  t h a t   t h e  program in t e rp re t s   t he   con f igu ra t ion  geometry t o  
be  an  extremely  blunt body f o r   c e r t a i n  Mach p lane   o r ien ta t ions .  The b lun t  body 
i n t e r p r e t a t i o n   s e v e r e l y   v i o l a t e s   t h e   s l e n d e r  body assumption  of   the  theoret ical  
method and r e su l t s   i n   g ros s   ove rp red ic t ion   o f   t he  wave drag. It would appear   tha t  
f o r  Mach numbers above  1.80, anything more than  a few degrees  of camber w i l l  cause 
e r r o r s   i n   t h e   f a r - f i e l d   d r a g   p r e d i c t i o n .  It shou ld   be   no ted   t ha t   fo r  a complete 
configurat ion,   the   forebody  contr ibut ion w i l l  be somewhat masked i n   t h e   o v e r a l l  wave 
drag. 

With the   except ion  of model 1 ( 8  = O O ) ,  the   modi f ied   l inear   theory  method  of 
re ference  10 p red ic t s   t he   t r ends   o f  wave drag  coeff ic ient   versus   nose droop a n g l e   f o r  
Mach numbers  1.47 through 2.16, a l though  the   l eve ls  are s l i g h t l y  low f o r  Mach numbers 
1.80 and 2.16. The l e v e l  of t h e  wave drag   coef f ic ien t   and  i t s  var ia t ion   wi th   nose  
droop  angle   are   not  w e l l  p r e d i c t e d   f o r  a Mach number of 1.20. 
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CONCLUDING REMARKS 

A series of  forebody  models  having  various  degrees  of  nose  droop  have  been 
t e s t e d   i n  a wind-tunnel  investigation a t  Mach numbers from 0.60 t o  2.16. The fore-  
bodies were a t t a c h e d   t o  a cy l indr ica l   a f te rbody.  The r e s u l t s  of t h i s   i n v e s t i g a t i o n  
are summarized  below. 

A l l  t h e  models  exhibited  the  characterist ic  aerodynamic  behavior of  forebody/ 
cy l ind r i ca l   a f t e rbody   conf igu ra t ions ;   t ha t  is ,  most o f   t h e   l i f t  a t  low angles  of 
a t t ack  w a s  apparent ly   generated  on  the  forebody,   while   for   higher   angles   of   a t tack,  
the   da ta   impl ied   cons iderable   a f te rbody  l i f t   genera ted  by separated  cross-flow  drag. 
A s  the  nose  droop  angle was increased, a d e c r e a s e   i n   l i f t  a t  constant   angle  of a t t a c k  
and a d e c r e a s e   i n   z e r o - l i f t   p i t c h i n g  moment were  measured. Minimum d r a g   a l s o  
increased ,   bu t   reduced   drag-due- to- l i f t   resu l ted   in   h igher   l i f t -drag   ra t ios   for   the  
models with  higher   droop  angles ,   especial ly   a t   supersonic   speeds.  

A t  supersonic   speeds ,   the   ro l l - s tab i l i ty   parameter  was r e l a t ive ly   cons t an t   w i th  
changes i n   a n g l e  of a t tack ,   and  i t s  magnitude w a s  e s s e n t i a l l y   p r o p o r t i o n a l   t o   t h e  
amount of  nose  droop. All t h e  models were d i r e c t i o n a l l y   u n s t a b l e   a t  small angles  of 
a t t ack ,   bu t  a t  l a rge r   ang le s  of a t t a c k ,   t h e  models  with  greater  nose  droop became 
d i r ec t iona l ly   s t ab le .  

Of t h e  two  methods used t o   p r e d i c t   t h e   z e r o - l i f t  wave drag  of  the  drooped  nose 
models, a f a r - f i e l d  method  worked reasonably   wel l   for  Mach numbers of 1.20 and  1.47, 
while a near - f ie ld  method  worked reasonably   wel l   for  Mach numbers of 1.47,  1.80,  and 
2.16. 

Langley  Research  Center 
National  Aeronautics  and  Space  Administration 
Hampton, VA 23665 
August 10, 1983 
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Figure 1 . -  Sketches  of the   models .  All dimensions i n   i n c h e s   ( c e n t i m e t e r s ) .  
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